

Image: Second second

REQUIREMENTS ON FIRE SAFETY

Prevent a risk lives of people in the building

- Prevention of fire spread in the building
- Prevention of fire spread to the nearby building
- Protection of fire intervention (fire brigade)

•

MAIN TECHNICAL STANDARDS

DESIGN	Fire protection of buildings (FPB)
	Non-industrial buildings
CSN 73 0804	Industrial buildings
CSN 73 0810	General requirements
CSN 73 0831	Assembly rooms
CSN 73 0833	Buildings for dwelling and lodging
CSN 73 0834	Changes of buildings
CSN 73 0835	Buildings for sanitary maters and social care
CSN 73 0845	Storage rooms
OTHERS	únnz

MAIN TECHNICAL FIRE STANDARDS

12T

Definitions of fire test standard and assessment of requirement properties CSN EN a CSN EN ISO (about 36 standards)

Fire classification of construction products and building elements (e.g. classification using test data from reaction to fire tests) - CSN EN

Chosen values of fire technical properties (e.g. values of fire resistance, heat values) - CSN

Technical conditions of fire safety facilities (e.g. equipment for fire-water supply) - CSN

CSN 73 0802 FPB – NON-INDUSTRIAL BUILDINGS

- Partition to fire compartments
- **Determination of fire risk**
- Level of fire safety (construction)
- **Dimension of fire compartment (verification)**
- **Requirement to building constructions**
- Escape routes
- Safety distances
- Building equipments
- Conditions for fire intervention

FIRE COMPARTMENT

únmz

Bounded space of building with fire dividing constructions

FIRE RISK FPB -- NON-INDUSTRIAL BUILDINGS computing fire load p_v [kg.m⁻²] expressive of theoretical intensity of fire and FPB

Conversion of heat value all flammability material in fire compartment to nominal heat value of wood

COEFFICIENT C COEFFICIENT EXPRESSIVE FIRE SAFETY EQUIPMENTS											
Value this coefficient always $c \leq 1$ (c = 1 It means than there isn t fire safety equipments)											
	Values c_1 until c_4 no count up \Rightarrow It is possible used only one coefficient										
At every combination fire safety equipments \Rightarrow It is possible to reduce value of coefficient c (in %)											
Coeff. c Equipments Range Tables CSN 73 0802											
c ₁ c ₂	Fire detection Fire brigade	0,7 – 1,0 0,5 – 0,95	tab. 2 tab. 3 a 4								
c ₃	Sprinkler Exhaust of smoke	0,5 – 0,8 0,6 – 0,9	tab. 5								

COEFFICIENT C

rantages utilization this coefficient

- 1) Reduction of fire risk (i.e. fire load)
- 2) Expansion of limiting dimension of fire compartment
- 3) Expansion of limiting dimension of size exit ways in this fire compartment

FIRE RISK FPB – INDUSTRIAL BUILDINGS Probably time fire duration τ [min] Л There is fire intensity that is characterized by probably

and corresponding probably temperature of combustion gases T_{g}

REQUIREMENTS **OF BUILDING PRODUTS**

TESTING AND CLASSIFICATION OF BUILDING PRODUCTS

CSN EN 13501-1 "REACTION TO FIRE TESTS"

Fire classification of construction products and building elements dividing to 7 classes 1, A2, B, C, D, E, F)

CSN 73 0863

Determination of flame propagation along the surface of building materials index of flame spread i_s (mm/min)

REQUIREMENTS **OF BUILDING CONSTRUCTIONS**

CLASSIFICATION **OF BUILDING CONSTRUCTIONS**

CSN EN 13501-2 Classification using test data from resistance fire tests

Classification time of fire resistance [min]: 10, 15, 20, 30, 45, 60, 90, 120, 180, 240, 360

Limiting states:

capacity and stability integrity

- isolation function limitation of temperature in no heated surface
- limiting density of thermal flow in in no heated side
- transmission of smoke products (smoke resistant) c self-closing facilities
 - XX others parameters

SORTING OF CONSTRUCTIONAL PARTS

QUESTION

Is it material of construction flammability?

YES

- It influences to capacity of elements
- If effects to fire severity

	DP1	DP2	DP3
capacity	no	yes	yes
fire severity	no	no	yes

CONSTRUCTIONAL SYSTEM OF BUILDING

- **Constructional system of building forms:**
- Carrier construction ensuring stability of building
- Fire dividing construction

CONSTRUCTIONAL SYSTEM OF BUILDING

INCOMBUSTIBLE

Vertical and horizontal construction must be DP1

Example: Brickwork building with concrete, ceramic or combined ceiling (steel beam + ceramic boards)

CONSTRUCTIONAL SYSTEM OF BUILDING

MIXED

Vertical construction must be DP1 Horizontal construction can be DP2

Example: Building with wood beam ceiling with subfloor and plaster soffit

CONSTRUCTIONAL SYSTEM OF BUILDING

COMBUSTIBLE

Variant 2) Some vertical and horizontal carrier construction and fire dividing DP3

REQUIRE	VIENT	r firi	ER	ES	IST	ΆN	CE			
CSIN 73-0810 Defined limiting states, Example:										
	💶 bearin	ıg fire divi	ding c	constru	iction	s (wa	lls and	d ceil	ing)	
	Fire dividing	p _v computational	SI	PB - Lowe	est fire sa	ifety degr	ee in fire	compart	ment	
	and bearing construction	fire load in fire compartment	L.	П.	Ш.	IV.	٧.	VI.	VII.	
fire resistance fire wall:		[kg.m ⁻²]		Height of building h [m]						
		15 12 30 60			no limiting					
III. SPB		30	0	12	30	no limiting				
	svstem	45	0	6	22,5	45		no limitin	g	
REL 45		60	0	6	12	30	45	no li	miting	
		90	0,	0	6	12	30	45	no lim	
		Fires	afety di	eareein fi	recom	nartmer	nt			
Building construction		IL 1		IV.	V.		VI.		VII.	
			sistanc	e of build	ling co	astructio	on	_		
1 Fire walls and fire ceilings					T		_		_	
a) in background floor b) in over ground floor	30 DP1 15	45 DP1 60 I		90 DP1 60	120		180 DP		0 DP1	
c) in last over ground floor	15	15 3	0	30	4		60 DP		0 DP1	
d) between building	30 DP1	45 DP1 60 I	DP1	90 DP1	120	DP1	180 DP	1 18	80 DP1	
d) between building	30 DP1	45 DP1 60 I	0P1	90 DP1	120	DP1	180 DP	1 18	80 DP1	

BASIC REQUIREMENTS

Evacuation of People ensure protection of people

- \Rightarrow before fire (temperature, flames,...)
- \Rightarrow before hot smoke (design of smoke venting)

Problem with evacuation

- \Rightarrow assembly buildings
- \Rightarrow building for dwelling and lodging
- \Rightarrow building for sanitary matters
- organisational and technical provisions

TYPES OF ESCAPE ROUTES
Unprotected escape routes (NUC)
each semicinent free communication leads to exit from building or to protected escape route (CHUC) needn t to divide fire dividing constructions
Protected escape routes (CHUC) – type A, B or C
 each permanent free communication leads to exit from building (to esplanade) must be protected before fire (temperature, smoke) fire dividing construction (only DP1) is necessary to solve way of venting (natural, forced)
Design each type of CHUC is bound to height of building and number of floors
Alternative escape possibilities
Windows in down stair (store windows), escape ladders, sliding bar,

OPTIC	T NC	YPE O	F ES	CAPE	ROUT	ΓE
Unprotecte	ed esc	ape rou	tes (NU	C)		
→ escape from (high of bui			ors to safe	ly space		
\rightarrow escape from		erground f	loor to saf	ety space	2,	
Protected	escap	be route:	s (CHU	C)		
\rightarrow escape from (It decides				1)		
News		Ту	ype of protect	ed route (CH	IUC)	
Number of escape routes from fire	(Over ground fl	oors	Und	der ground flo	oors
compartment, resp.			Height of b	uilding h [m]	
building	to 22,5	above 22,5 to 45,0	above 45,0	to 4,5	above 4,5 to 8,0	above 8
One escape route	A	в	C or B + B	A	в	с
Other escape route	Α	Α	В	А	А	В

DESIGN OF ESCAPE ROUTES

Number of evacuated persons (E) according norm CSN 73 0818 (tabulated)

Type of room	Area (m ²) to 1 person	Coefficient of design person
Office	5,0	-
Boardroom	1,5	-
Classroom	2,0	-
Sales area	1,5	-
Library	2,5	-
Flat	20	1,5

Example: Office Number E

 $S = 20 m^2$ E = 20/5 = 4 persons

DESIGN OF ESCAPE ROUTES

s of evacuation (s) physical and psychical ability

- a) People of able self movement common people (students, adults)
- b) People with limited able of movement

 reduced move ability (handicapped people, patients,..)
 children from 3 to 6 years or elderly people (above 60years) (maternity school, rest home,...)
- c) People of disable of movement
 blind people or immovable people (patients in the beds)
 children to 3 years (infantile institution, nursery)
 mentally deficient people (psychiatry)

DESIGN OF ESCAPE ROUTES

- Simultaneous evacuation

 evacuation along NUC from fire comp.
 evacuation along CHUC from building (it goes into max. 3 fire compartment)
- Sequential evacuation

 evacuation along CHUC from building (it goes into > 3 fire compartment)
- Calculation detailed design of evacuation > 1000 people according CSN 73 0818 > 500 people in multi-storey building (h_p > 22,5 m) Software: buildingEXODUS, SIMULEX,..

Ŷ,

Length of nonprotected escape route

It measures from most distant place fire compartment to exit from building (safety place) or to protected escape route.

Equipments on the escape routes Evacuation /resp. fire/ lifts → buildings of medial facility → buildings containing 10 persons with reduced mobility Fire doors \rightarrow opening d pecificity: Standby supply (min. 45 min) Min. proportions of lift Incombustibility materials Travelling time (max. 2,5 min) İ **}** 1 3

EVAKUAČNÍ VÝTAH

- opening door in direction escape (obligation for evacuation > 200 peoples) door check (self closing device) for fire protected escape automatic opening of door (it must be also manual)
- oor with door latch leave out to width escape route

Calculation of fire distances

Fire distance is calculated:
a) places of falling burning particles from external walls or roof cladding - d₁ [m]
b) density of heat flow - d₂ [m]
Than the equation is valid:

 $d_1 < d_{\text{resulting}} > d_2$ [m]

Fire distances by force of radiant heat

Height	Length	Percent	Fi	re dist	ance i	n m fo	r com	outatio	n fire	load p	, in kg.	m ⁻²
m	m	of open area	≤10	20	30	40	50	60	80	100	120	> 180
		100	2,5	3,5	4,0	4,4	4,7	5,0	5,4	5,7	6,0	6,7
	to 4,5	80	2,1	2,9	3,5	3,8	4,1	4,4	4,7	5,0	5,3	5,9
	10 4,5	60	1,5	2,3	2,8	3,1	3,4	3,6	4,0	4,2	4,5	5,0
		40	0,2	1,5	1,9	2,3	2,5	2,7	3,0	3,2	3,4	3,9
		100	3,1	4,5	5,3	5,9	6,3	6,7	7,3	7,8	8,2	9,1
	9,0	80	2,5	3,7	4,5	5,0	5,4	5,8	6,4	6,8	7,2	8,0
	9,0	60	1,7	2,8	3,5	4,0	4,4	4,7	5,2	5,6	5,9	6,7
		40	0,3	1,7	2,3	2,8	3,1	3,4	3,8	4,2	4,4	5,1
		100	3,4	5,1	6,1	6,9	7,5	8,0	8,8	9,5	10,0	11,3
	15,0	80	2,6	4,1	5,1	5,8	6,3	6,8	7,5	8,1	8,6	9,7
	15,0	60	1,7	3,0	3,9	4,5	5,0	5,4	6,0	6,6	7,0	8,0
to 3,0		40	0,3	1,8	2,4	2,9	3,3	3,7	4,2	4,6	5,0	5,9
		100	3,5	5,4	6,6	7,6	8,4	9,0	10,1	10,9	11,6	13,2
	24,0	80	2,7	4,3	5,4	6,2	6,9	7,5	8,4	9,2	9,9	11,3
	24,0	60	1,8	3,1	4,0	4,7	5,3	5,7	6,5	7,2	7,7	9,0
		40	0,3	1,8	2,5	3,0	3,4	3,8	4,4	4,9	5,3	6,3
		100	3,5	5,5	6,9	8,0	8,9	9,6	10,9	11,9	12,8	14,8
	above	80	2,7	4,3	5,5	6,4	7,2	7,8	8,9	9,8	10,6	12,3
	36,0	60	1,8	3,1	4,0	4,8	5,4	5,9	6,8	7,5	8,1	9,6
		40	0,3	1,8	2,5	3,0	3,4	3,8	4,5	5,0	5,4	6,5

Equipments for fight-fighting intervention

1) Communication

- hardened communication (load capacity 80 kN to axletree)
- width of communication at least 3,0 m
- distance from building max. 20 m

2) Gateway and Passage

min dimension
 3,5 m x 4,1 m
 (width x height)

Equipments for fight-fighting intervention

4) Safety ladder

- obligatory for area of plane roof S > 200 m²

5) Fire walkway

- 6) Internal fire-fighting ways
- obligatory for building ... h > 22,5 m
- generally protected escape routes type B and C

7) Fire lift

 obligatory for building h > 45 m

Equipments for fight-fighting intervention

10) Fire extinguishers

- water, foam, powder,...
 in any fire compartment designates number of fire extinguishers:

n_r = 0,15 (S . *a* . *c*₃)^{1/2} ≥ 1,0

